Sublinear-Time Algorithms for Compressive Phase Retrieval
نویسندگان
چکیده
In the compressive phase retrieval problem, or phaseless compressed sensing, or compressed sensing from intensity only measurements, the goal is to reconstruct a sparse or approximately k-sparse vector x ∈ R given access to y = |Φx|, where |v| denotes the vector obtained from taking the absolute value of v ∈ R coordinate-wise. In this paper we present sublinear-time algorithms for different variants of the compressive phase retrieval problem which are akin to the variants considered for the classical compressive sensing problem in theoretical computer science. Our algorithms use pure combinatorial techniques and near-optimal number of measurements.
منابع مشابه
Fast Phase Retrieval for High-Dimensions
We develop a fast phase retrieval method which can utilize a large class of local phaseless correlation-based measurements in order to recover a given signal x ∈ C (up to an unknown global phase) in near-linear O ( d log d ) -time. Accompanying theoretical analysis proves that the proposed algorithm is guaranteed to deterministically recover all signals x satisfying a natural flatness (i.e., no...
متن کاملFast Phase Retrieval from Local Correlation Measurements
We develop a fast phase retrieval method which can utilize a large class of local phaseless correlationbased measurements in order to recover a given signal x ∈ C (up to an unknown global phase) in near-linear O ( d log d ) -time. Accompanying theoretical analysis proves that the proposed algorithm is guaranteed to deterministically recover all signals x satisfying a natural flatness (i.e., non...
متن کاملCompressive Phase Retrieval of Structured Signal
Compressive phase retrieval is the problem of recovering a structured vector x ∈ C from its phaseless linear measurements. A compression algorithm aims to represent structured signals with as few bits as possible. As a result of extensive research devoted to compression algorithms, in many signal classes, compression algorithms are capable of employing sophisticated structures in signals and co...
متن کاملRobust Compressive Phase Retrieval via L1 Minimization With Application to Image Reconstruction
Phase retrieval refers to a classical nonconvex problem of recovering a signal from its Fourier magnitude measurements. Inspired by the compressed sensing technique, signal sparsity is exploited in recent studies of phase retrieval to reduce the required number of measurements, known as compressive phase retrieval (CPR). In this paper, `1 minimization problems are formulated for CPR to exploit ...
متن کاملFast Index Based Filters for Music Retrieval
We consider two content-based music retrieval problems where the music is modeled as sets of points in the Euclidean plane, formed by the (on-set time, pitch) pairs. We introduce fast filtering methods based on indexing the underlying database. The filters run in a sublinear time in the length of the database, and they are lossless if a quadratic space may be used. By taking into account the ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.02917 شماره
صفحات -
تاریخ انتشار 2017